The Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network

Authors

Abstract:

One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank popularity and in turn will have some costs; and the bank will encounter decreasing the customers use of these systems. On the other hand, if the bank faces cash trapping at an ATM, regarding to inflation in Iran, it will have a negative impact on bank profitability. The aim of this study is to predict accurately to eliminate the posed double costs. Since the information related to the amount of cash is daily, each ATM will have a behavior as time series; and also because the aim of this study is to predict the demand for cash forecasting from all of the ATMs, we are facing data from the type of panel. The methods that are used for forecasting ATM cash demand in this research include: Forecasting by statistical method, MLP neural network method and LSTM deep recurrent neural network. We will compare the results of these methods and show that LSTM deep recurrent neural network method has the best accuracy in forecasting.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Cash demand forecasting in ATMs by clustering and neural networks

To improve ATMs’ cash demand forecasts, this paper advocates the prediction of cash demand for groups of ATMs with similar day-of-the week cash demand patterns. We first clustered ATM centers into ATM clusters having similar day-of-the week withdrawal patterns. To retrieve “day-of-the-week” withdrawal seasonality parameters (effect of a Monday, etc) we built a time series model for each ATMs. F...

full text

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Forecasting Natural Gas Demand Using Meteorological Data: Neural Network Method

The need for prediction and patterns of gas consumption especially in the cold seasons is essential for consumption management and policy planning decision making. In residential and commercial uses which account for the bulk of gas consumption in the country the effects of meteorological variables have the highest impact on consumption.  In the present research four variables include daily ave...

full text

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

A Flexible Neural Network for ATM Cash Demand Forecasting

The paper presents an artificial neural network based approach in support of cash demand forecasting for automatic teller machine (ATM). On the start phase a three layer feed-forward neural network was trained using Levenberg-Marquardt algorithm and historical data sets. Then ANN was retuned every week using the last observations from ATM. The generalization properties of the ANN were improved ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 3

pages  69- 88

publication date 2019-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023